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P R O P A G A T I O N  O F  S H O C K  W A V E S  I N  A T W O - P H A S E  M I X T U R E  

W I T H  D I F F E R E N T  P R E S S U R E S  O F  T H E  C O M P O N E N T S  

A.  A .  Z h i l i n  a n d  A .  V .  F e d o r o v  UDC 532.529 

The process of propagation of shock waves in two-component mixtures is considered. The 
studies were performed within the framework of the two-velocity approzimation of mechanics 
of heterogeneous media with account of different pressures of the components. The stability 
of propagation of all types of stationary shock waves (fully dispersed, frozen-dispersed, 
dispersed-frozen, and frozen shock waves of two-front configuration) to infinitesimal and finite 
perturbations is shown numerically, using the method of coarse particles. The problem of 
initiation of shock waves (the formation of different types of shock waves from stepwise initial 
data) is solved. Flows in the transonic range relative to the speed of sound in the first component 
are obtained. 

The propagation of shock waves (SW) in two-component mixtures of condensed materials were studied 
from the viewpoint of mechanics of heterogeneous media for different pressures of the components [1-7]. 
Materials that  satisfy the linear equation of state were considered in different asymptotic approximations 
for relaxation times of the nonequilibrium processes of equalization of velocities and pressures. Zhilin et al. 
[6] and Zhilin and Fedorov [7] examined in detail the problem of the structure of stationary shock waves in 
the mixture in the general case of finite relaxation times. The range of existence of different SW types (of 
one- and two-front configuration) was determined in the plane of the following parameters: the initial volume 
concentration of the first phase in" the mixture and the SW velocity. In the present paper, we deal with the 
problems of numerical simulation of the propagation and initiation of these waves within the framework of 
the one-dimensional nonstationary model of mechanics of heterogeneous media. 

1. P h y s i c o - M a t h e m a t i c a l  F o r m u l a t i o n  of  t h e  P r o b l e m .  To describe the process of propagation 
of nonstationary shock waves in a heterogeneous mixture of condensed media with different pressures and 
velocities of the components, we use the equations of mechanics of heterogeneous media. The conservation 
laws of mass and momentum for each component of the mixture are supplemented by the equation of the 
m2-transfer and equations of state and are written in the following dimensionless form: 

Op2 Op2U2 OplUl Opl u2 OP1 Opl OplUl -- O, Jr - O, ~ Jr = - r n l  Jr Fs, 
Ot + Ot Oz Ot Oz 

Op2u2 Op2u~ O P2 _ ( P2 - P1) Om2 Ore2 Ore2 = R, 
o--i-  + o--2- = - m 2  - Fs ,  o---i- + u2 O--g- 

ml = l - m2, P1 = Pl/ml - 1 ,  P2 = a2(p2/m2 - P). 

(1.1) 

Here pi, ui, Pi, and mi are the mean density, velocity, pressure, and volume concentration of the ith component 
of the mixture, Fs = mxp2(u2 - ul)/rs is the Stokes force, rs = 2/3/(9#a) is the time of Stokes relaxation 
of velocities, R = mlm2(P2 - P1)/rm2 is the function that describes the transfer of the solid phase, rm2 = 
2p~z,oazr/(p11,oa 2) ~ 2it2 is the time of pressure relaxation in the components of the mixture, #i is the 
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dynamic viscosity of the ith component, a = a2/al, ~ -" p22,0/pll,O, pi = mipii, pii is the true density of 
the ith component, and ai and pii,o are the speed of sound and the true density of the material of the ith 
component of the mixture. The velocities are normalized to al,  the densities to p11,0, the pressures to a~p11,0, 
the parameter z to the radius of the solid particles r, the time t to to = r/a1, and the dynamic viscosity pi 
to alpll,Or. 

For Eqs. (1.1), the correct problem is the Cauchy problem for the vector of the solution 
~(pl,  p2, Uh u2, m2): 

~o=~o I for t = 0 ,  (1.2) 

Here ~o I is the vector of flow parameters at the initial time. 
P r o b l e m  1. Stability of S W  Propagation. 
We consider a steady SW described by the solution of the boundary-value problem for a system of 

ordinary differential equations as the initial data [6, 7]. In this case, ~I  represents 
w continuous functions for fully dispersed shock waves, 
n discontinuous functions in the first (light) component and continuous functions in the second (heavy) 

component for frozen-dispersed shock waves, 
m continuous functions in the first component and discontinuous functions in the second component 

for dispersed-frozen shock waves, and 
discontinuous functions in both components for frozen shock waves. 

For these initial data, the perturbations of all wavelengths are small, which is caused by using the 
numerical method of solving the boundary-value problem for a system of ordinary differential equations. 
The solution of this problem is often treated in the literature as the study of the stability of the stationary 
propagation of shock waves to infinitesimal perturbations. 

We study the propagation of shock waves of the above-mentioned types with a superposition of finite- 
amplitude perturbations of the following form on each component of the mixture: 

ui(z) = ui,st(z)(1 + A i s i n C r - x l ~  (1.3) 
li,Pr 

Here Ui,st(Z) is the undisturbed velocity profile, Ai is the amplitude of harmonic perturbation of the ith 
component, zf0,i is the left boundary of the SW front in the ith component, li,Pr is the SW thickness in the 
ith component according to Prandtl, and ki is the number of loops on the SW in the ith component. The 
remaining parameters of the initial state were determined from the conservation laws for the mixture. 

P r o b l e m  2. Initiation of a Steady Shock Wave. 
As the function ~o x in (1.2), we consider the steady solution ahead of the front of an SW propagating 

with velocity D (the initial state ~0) and behind the SW front (the final state ~an). Both states belong to 
the equilibrium Hugoniot adiabat. 

2. N u m e r i c a l  M e t h o d  of  So lu t ion .  Problems 1 and 2 were solved by the coarse-particle method of 
the first order of approximation [8, 9], which was modified to take into account the equation of compacting 
kinetics (i.e., the equation of mz-transfer). Therefore, at the first stage of calculation, to determine the flow 
velocities fil and ~22 intermediate in time, we use equations that depend not only on P,  but also on P1 and 
are written in the form 

ml j  At 
filj = ulj Plj A z  (Plj+1/2 - Plj-1/2), 

1 A t  
~zj = u2j P2j /',z (Pj+I/2 - P J - m )  + ml j  At  P2j A x  (P1j+l/2 -- Ply-I~2)" 

The difference equations have the first-order accuracy in time and space. 
At the second stage, the densities of mass and momentum fluxes are usually calculated using a relation 

with approximation viscosity, which allows the shock-capturing calculation without a significant smearing of 
the SW front. 
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At the third and final stage, we find the fields of the flow parameters/3i and t~i at the time t = t + At. 
The volume concentration of the mixture m2 at the new time layer is determined from the difference equation 

1 
r~2j = ~-2j {(p2rn2)j - A t  Rp2 jA t} ,  �9 "~x[(p2rn2u2)j+l/2 - (p2rn2~2)j_i/2] + 

where R = rnlffn2j(P2j - Pu ) / r ,  n2. 
The boundary of stability of the resultant difference scheme is determined by the Courant-Friedrichs- 

L4vy condition adapted to a multiphase flow of the mixture: 

<  xllU.I. 

Here U. = Cef + u. (u. is the maximum velocity of wave propagation over the cells). 
3. D i scuss ion  of  N u m e r i c a l  Resu l t s .  Stability of Propagation of Shock Waves of Different Types 

(Problem 1). We consider the propagation of different SW types obtained by Zhilin and Fedorov [7] for a 
self-similar flow of the mixture in the unsteady approximation. 

(1) For D = -1 .5  and small values of ml0, the steady formulation yields a fully dispersed flow in both 
components of the mixture. In Problem 1, constant equilibrium values of the parameters of the mixture are 
maintained at the right boundary of the flow domain; therefore, a dispersed SW with monotonic profiles of 
velocities and pressures of the components propagates steadily to the left. In calculations, these profiles move 
steadily with a constant velocity and remain monotonic for t = 100, 300, and 500. 

It is shown [7] that an increase in the volume concentration of the light component of the mixture 
changes the flow type from fully dispersed to frozen-dispersed. The new type of flow is characterized by an 
internal SW in the first phase, but it is continuous in the second phase. The flow steadiness is lost in the 
initial period of calculation, but then the flow stabilizes again with the same profile (the time of stabilization 
is t < 10). Depending on the value of ml0, the shock wave is slightly smeared (from three to five cells). After 
that,  the propagating wave retains a steady configuration of the frozen-dispersed SW. Figure 1 shows the 
velocity profiles of the components at the times t = 0, 10, 30, and 50 for D = -1 .5  and rnl0 = 0.95. 

(2) As the SW velocity increases (D = -2.5),  the initial flow is a fully dispersed SW with a monotonic 
(ml0 = 0.1) or nonmonotonic (ml0 = 0.3 and 0.5) velocity profile in the light component. As in the case 
D = -1.5,  a steady dispersed SW propagates to the left. The velocity profile in the first component is 
nonmonotonic, and the minimum value is lower than the velocity of the mixture in the final equilibrium state. 

As the water content in the mixture (i.e., ml0) increases, the flow is reconstructed: a shock wave 
appears in the first phase. For D = -2 .5  and ml0 = 0.7 and 0.9, the shock wave propagates steadily with a 
constant velocity. The shock is slightly smeared because of the method of solution. 

(3) As the SW velocity increases (D = -3 .3  and rnl0 = 0.4), the flow with a frozen SW is observed at 
t = 0 in the second component, and a dispersed flow with a nonmonotonic velocity profile is observed in the 
first component of the mixture. An analysis of the pressure profile of the second component shows that the 
first shock is also slightly smeared because of the method of solution and the wave propagates steadily with 
velocity D = -3.3.  

By increasing the volume concentration ml0 = 0.7 and 0.9 for the same value D = -3.3,  we pass to 
the region of existence of a frozen SW of the two-wave structure. At t = 0, the flow is characterized by a 
bow shock wave in the heavy component and by an internal shock wave in the light component. The flow is 
initially unsteady, but stabilizes with time. The flow in the second component with the front discontinuity 
is formed somewhat faster than in the first component. After that,  a stable steady propagation of the initial 
two-wave configuration is observed. 

We note some characteristic features of the numerical calculation of propagation of different shock-wave 
types. If we have a discontinuous flow, a drop in the velocity of the light component appears in the solution 
at first, which causes a change in the remaining parameters behind the SW front. Then the parameters of 
the mixture become more smooth in the region considered. A decrease in the step in space leads to a more 
dramatic reduction of the zone of flow stabilization than a decrease in the time step. 

Stability of the Shock Wave to Finite Perturbations. By superimposing finite perturbations of the type 
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(1.3) on the shock waves of the examined types, it was found that the profiles of velocities and, hence, of 
pressures of the components rapidly become stable and propagate with velocity D. Figure 2 shows the process 
of flow stabilization with perturbations superimposed on the initial data for D = - 1 . 5  and ml0 = 0.95. The 
following features were noted in the calculations: 

- -  An increase in the frequency of perturbations in one of the components leads to an insignificant 
increase in the time of flow stabilization; 

- -  An increase in the amplitude of harmonic perturbation of the components leads to a proportional 
increase in the time necessary to obtain a steady flow; 

- -  The time of flow stabilization tstab increases with increasing initial parameters of the mixture (D 

and ml0). 
Initiation of Shock Waves (Problem 2). 
(1) Stepwise initial data  with mz0 = 0.2 form a dispersed SW with velocity D = -1 .5 .  The process of 

formation of such an SW lasts from t = 0 to t = 300. For t = 100, some deviations of the desired profile from 
that obtained at t = 300 are seen (especially in regions adjacent to the initial and final equilibrium states). 
A further increase in integration time (t = 300, 500, 700, and 1000) shows that the profiles of velocities and 
pressures of the components become stable. As ml0 increases, the duration of the SW formation decreases. 
Thus, for rna0 = 0.5, the period of flow stabilization decreases to the interval t = 0-100. 

An increase in ml0 to 0.6 leads to flow reconstruction: an internal SW appears in the light component. 
The amplitude of this wave is very small, and it was difficult to determine its position in the steady problem 
[7]. In our case, the pressure of the second component exceeds the equilibrium value at the initial stage of 
flow stabilization, but this peak gradually disappears. The process of formation of this type of flow ends at 
t = 50, D = -1 .5 ,  and mz0 = 0.6 (Fig. 3). 

For ml0 = 0.7, the pressure in the heavy component behaves nonmonotonically, and one has to take 
into account the specific features of steady solutions to identify the nonmonotonic features caused by numerical 
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integration (as, for example, at ml0 = 0.6). As ral0 increases to 0.85 and 0.95, the SW amplitude increases 
and the velocity profiles of the components become more and more different. For these values of ml0, the 
flows becomes stable before t = 30. 

Thus, for ral0 up to 0.5, the profiles of Ul and u2 are very close, and the flow can be considered as 
equilibrium to a good accuracy. For ml0 = 0.6 and 0.7, an internal SW appears in the first component, the 
flow is almost equilibrium relative to the velocities ahead of the SW front, and velocity nonequilibrium is 
observed behind the SW front. As ml0 increases (rot0 = 0.85 and 0.95), the differences in the velocity profiles 
of the components are clearly seen in the light component both ahead of the SW front and behind it. 

Table 1 shows the dependence of the flow stabilization time of different SW types on the initial SW 
velocity and volume concentrations of the components. An increase in the volume concentration of the light 
component leads to a decrease in the zone of flow stabilization, which is caused by inertia/properties of the 
initial materials of the mixture. 

(2) As D increases to -2 .5 ,  a steady flow is formed faster than for D = -1.5.  An analysis of the 
results of flow calculations with ml0 = 0.1, 0.3, 0.5, 0.6, 0.7, and 0.9 shows that they completely coincide with 
those obtained previously in Problem 1. This allows us to state that,  initiating the flow from stepwise initial 
data, we can obtain velocity and pressure profiles of the same structure as in solving a self-similar problem. 
Moreover, based on the solution of the SW initiation problem, we can obtain flows whose calculation in the 
steady-state approximation is difficult because of the presence of internal singular points. The velocity profiles 
of the components for D = -2 .5  and ral0 = 0.6 are shown in Fig. 4. The complexity of the solution in the 
self-similar approximation was due to the necessity of a smooth transition through the speed of sound in the 
first component. Analyzing the profiles at t = 20 and t = 30, we can conclude that  the transition from the 
supersonic to the subsonic state in the first component is caused by a sma/1-amplitude internal SW. The fluid 
is accelerated behind the front of this shock wave, and its velocity profile passes through al at a certain point 
of the flow. This singular point is nonstationary, and the flow continuously passes to the supersonic state 
through this point. 

We analyze the pattern of transition in a transonic flow in the first phase with a singular point. The 
change in the velocity in the first phase is described by the ordinary differential equation 

dU__11 _ U1 Fs - p l R / m l  (3.1) 
dC p l  - 1 

As the velocity of the first component approaches the speed of sound, a gradient catastrophe occurs in the 
first phase. Equating the numerator in Eq. (3.1) to zero at U1 = 1, we find that the velocity/]2 in the heavy 
component satisfies the equation 

F(U2) = UsC~vm2-  U4C2[vm2(C2 + 2C3 + 2 a 2 f i - 4 C 1 ) -  2CClrs] 

+U~Cz[Tm2{(C3 + aZfi -- 2C1) 2 + 2C2(C3 + a2fi - 2C1) + 2a2C 2 } 
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TABLE 2 

rr=lo 

0.35  0.7877 
0.3715 0.7653 
0 .40  0.7342 
0 .45  0.6762 
0 .50  0.6147 
0.52 0.5893 
0.5396 0.5641 
0.55 0.5506 
0.58 0.5112 
0.60 0.4846 
0.61 0.4712 
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Uo = 2.5 

U]' U~ 'x 

1.2042 1.2069 
1.1405 1.2486 
1.0511 1.2761 
1.0012 1.2862 
0.9774 1.2906 

Uw 

1.4638 
1.4195 
1.3625 
1.2664 
1.1745 
1.1388 
1.1043 
1.0862 
1.0346 
1.0008 
0.9841 

0.7611 
0.7393 
0.7092 
0.6537 
0.5950 
0.5708 
0.5467 
0.5337 
0.4959 
0.4703 
0.4574 

Uo = 3.3 

U~' U~ H 

1.5616 1.5675 
1.4571 1.5939 
1.3354 1.5891 
1.2247 1.5853 
1.1818 1.5854 
1.1401 1.5867 
1.1182 1:5879 
1.0551 1.5936 
1.0131 1,5993 
0.9222 1.6029 

1.5022 
1.4564 
1.3970 
1.2963 
1.1989 
1.1607 
1.1237 
1.1042 
1.0483 
1.0115 
0.9932 

-2CCITs(2C3 § 1 § a2~ - 3CI)] - U22[rrn2C2{(C3 + a2~ -- 2C1) 2 

+2a2C2(C3 + a2# L 2C1 + C2)} -- 2CClrs{(C3 + 1 -- 2Cl)(C3 + a2~ -- CI) + C2a2}1 

+U2a2C2[vm2C2(C2a 2 n u 2C3 + 2a2/~ --  4C1)  - 2CC1Ts(C'3 + 1 - Cl)]  - rm2C3a 4 : 0, (3.2) 

where C -- 1 - a2~, Ci -- pi0U0, and C3 = (C1 + C2)U0. This equation has one real root U I in the interval 
from 0 to 1. It has no physical sense and is not considered in what follows. 

The behavior of the function F(U2) versus the parameter ml0 for U0 = 2.5 is plotted in Fig. 5. We can 
see that two more roots of Eq. (3.2) appear. Thus, a U-shaped branch of F(U2) is located above the abscissa 
axis at ml0 = 0.5, which goes down as m]0 increases and touches the axis at rnl0 ~ 0.5396. Two multiple 
roots appear: U II and V III .  A further increase in the volume concentration of the light component leads to 
the appearance of two more roots. As ml0 increases, the values of U2 II shift to smaller U2 and the values of 
U II! to greater U2. The numerical values of the roots are listed in Table 2. 

The conducted calculation of the unsteady problem shows that only the second root V II is physically 
realized in the flow. A flow with a short-time outcome into the subsonic region exists at ml0 > ml ,  (ml ,  is 
the volume concentration for which Ul,min : 1) and breaks down when the final velocities reach unity. 

Thus, for the initial velocity U0 = 2.5, the transonic flow region begins at ml0 ,~ 0.53 and ends at 
ml0 ~ 0.6005. It should be noted that,  after the flow with the sonic final state in the first phase U1 = U2 = 
Ufin = 1 is obtained, the subsequent motions of the mixture with increasing ml0 have a subsonic final state 
in both components. The analysis confirms that it is possible to pass continuously from the subsonic to the 
supersonic branch of the solution. 

We summarize the above discussion about  the emergence of flow with a weak SW in the transonic 
r ange .  Fo r  D : - 2 . 5  a n d  s m a l l  rn l0 ,  t h e  f inal  s t a t e  is s u p e r s o n i c  in t h e  f i rs t  p h a s e ,  a n d  t h e  v e l o c i t y  prof i le  

is m o n o t o n i c .  As  t h e  c o n t e n t  of  f lu id  in t h e  m i x t u r e  i nc rea se s ,  a loca l  m i n i m u m  a p p e a r s  in t h e  prof i le  ul(x),  
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which approaches the speed of sound in the first phase with increasing mz0. There exists a certain value 
r o t 0  ---- ml.  for which U l , m i  n ---- a l  -t- D and ttfin > az + D. A further increase in ml0 in the stationary approach 
leads to a gradient catastrophe. This indicates that it is necessary to introduce an SW after which the flow 
passes continuously through the speed of sound in the first phase, i.e., through an internal singular point (the 
second-phase velocities for various rnz0 are listed in Table 2). Figure 4 shows the formation of this type of flow 
for D = -2.5 and mz0 = 0.6. A steady flow with an internal SW in the transonic range is formed at t = 20 
(the internal SW is marked by the dot in the profile of ttl). The subsonic region is characterized by the fact 
that uz(z) has a local minimum. As the fluid concentration increases, the position of this minimum approaches 
the SW front, and the SW amplitude increases. Unsteady calculations of these types of flow demonstrated 
the stability of their propagation. 

(3) As D increases to -3.3,  the flow for all mz0 has a bow SW in the second component. Figure 6 
illustrates the process of flow stabilization for ml0 = 0.2 and 0.4. We can trace the formation of the bow SW 
whose amplitude slightly fluctuates at the initial stage of flow stabilization. We note that the monotonically 
decreasing profile of the velocity u2 in the flow with the bow SW is formed faster than the nonmonotonic 
profile of the velocity Ul of the first component. 

For mz0 = 0.5, a flow thatl enters the transonic region is formed. For the SW with the propagation 
velocity D = -3.3, the width of the existence region of the transonic flow increases with changing rnz0. The 
conducted calculations show that the transonic region begins at ml0 ,-~ 0.43 and ends at ml0 ~ 0.6063. Some 
numerical values of the roots of Eq. (3.2) are listed in Table 2, and the characteristic features of the qualitative 
behavior are similar to the case described for D = -2.5. 

For ml0 = 0.7 or rrtz0 = 0.9, a shock wave of two-front configuration with a bow SW in the second 
component and an internal SW in the first component is formed. As in the previously considered problem of 
flow stabilization, the flow with the front discontinuity in the second phase is formed faster than the flow with 
the internal discontinuity in the first phase. We note that the velocities and pressures of the components at a 
large distance from the SW structure formed are slightly different from the values of these parameters in the 
final state determined analytically, which is due to the calculation technique. 

Conclusions.  Based on numerical simulation of unsteady problems of SW propagation in a 
heterogeneous mixture of condensed media with different pressures and velocities, the following conclusions 
are drawn. 

- -  The steady dispersed, frozen-dispersed, dispersed-frozen, and fully frozen shock waves are stable to 
infinitesimal and finite perturbations. 

- -  From the initial data in the form of a step, which is the initial and final states on the equilibrium 
Hugoniot adiabat, flows with shock waves of the above-mentioned configurations are formed with time. 

- -  There exists a transonic motion of the mixture in the form of a frozen-dispersed SW with a continuous 
transition through the speed of sound in the first phase. 

52 



REFERENCES 

. 

. 

3. 

4 .  

5. 

6. 

7. 

8. 

. 

A. V. Fedorov, "Mathematical description of the flow of a mixture of condensed materials at high 
pressures," in: Physical Gas Dynamics of Reactive Media [in Russian], Nauka, Novosibirsk (1990), 
pp. 119-128. 
A. V. Fedorov, "Shock-wave structure in a mixture of two solids (a hydrodynamic approximation)," 
Model. Mekh., 5(22), No. 4, 135-158 (1991). 
A. V. Fedorov, "Shock-wave structure in a heterogeneous mixture of two solids with equal pressures of 
the components," in: Numerical Methods of Solving Problems of Elasticity and Plasticity (collection of 
scientific papers) [in Russian], Inst. of Theor. and Appl. Mech., Novosibirsk (1992), pp. 235-249. 
E. V. Varlamov and A. V. Fedorov, "A traveling wave in a nonisothermal mixture of two solids," Model. 
Mekh., 5(22), No. 3, 14-26 (1991). 
A. V. Fedorov and N. N. Fedorova, "Structure, propagation and reflection of shock waves in a mixture 
of solids (the hydrodynamic approximation)," Prikl. Mekh. Tekh. Fiz., No. 4, 10-18 (1992). 
A. A. Zhilin, A. V. Fedorov, and V. M. Fomin, "A traveling wave in a two-velocity mixture of 
compressible media with different pressures," Dokl. Ross. Akad. Nauk, 850, No. 2, 201-205 (1996). 
A. A. Zhilin and A. V. Fedorov, "The shock-wave structure in a two-velocity mixture of compressible 
media with different pressures," Prikl. Mekh. Tekh. Fiz., 39, No. 2, 10-19 (1998). 
A. A. Gubaidullin, A. I. Ivandaev, and R. I. Nigmatulin, "The modified method of coarse particles for 
calculation of unsteady wave processes in multiphase dispersed media," Zh. Vychisl. Mat. Mat. Fiz., 
17, No. 6, 1531-1544 (1977). 
A. I. Ivandaev and A. G. Kutushev, "Numerical simulation of unsteady wave flows of suspensions with 
identification of the boundaries of two-phase regions and contact discontinuities in the carrier gas," in: 
Numerical Methods of Continuum Mechanics (collected scientific papers) [in Russian], Vol. 14, No. 6, 
Inst. of Theor. and Appl. Mech.-Comput. Center, Novosibirsk (1983), pp. 58-82. 

53 


